
Eur. Phys. J. D 36, 89–94 (2005)
DOI: 10.1140/epjd/e2005-00081-1 THE EUROPEAN

PHYSICAL JOURNAL D

Interference of Bose-Einstein condensates and entangled
single-atom state in a spin-dependent optical lattice

L.H. Wen1,2,3,a, M. Liu1,2,3, H.W. Xiong1,2,3,b, and M.S. Zhan1,2,c

1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics
and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P.R. China

2 Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071, P.R. China
3 Graduate school, Chinese Academy of Sciences, Beijing 100080, P.R. China

Received 24 November 2004 / Received in final form 8 March 2005
Published online 7 June 2005 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2005

Abstract. We present a theoretical model to investigate the interference of an array of Bose-Einstein
condensates loaded in a one-dimensional spin-dependent optical lattice, which is based on an assumption
that for the atoms in the entangled single-atom state between the internal and the external degrees of
freedom each atom interferes only with itself. Our theoretical results agree well with the interference
patterns observed in a recent experiment by Mandel et al. [Phys. Rev. Lett. 91, 010407 (2003)]. In addition,
an experimental suggestion of nonuniform phase distribution is proposed to test further our theoretical
model and prediction. The present work shows that the entanglement of a single atom is sufficient for the
interference of the condensates confined in a spin-dependent optical lattice and this interference is irrelevant
with the phases of individual condensates, i.e., this interference arises only between each condensate and
itself and there is no interference effect between two arbitrary different condensates.

PACS. 03.75.Lm Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons,
vortices and topological excitations – 03.75.Gg Entanglement and decoherence in Bose-Einstein conden-
sates – 05.60.Gg Quantum transport

1 Introduction

Since the first interference measurement [1] on two ex-
panding condensates there has been growing interest in
the experimental and theoretical study of the interference
of Bose-Einstein condensates (BECs). In particular, op-
tical lattices created by retroreflected laser beams pro-
vide a unique tool for testing at a fundamental level the
quantum properties of BECs in a periodic potential [2].
The interference patterns obtained from the expansion of
an array of condensates trapped in an optical lattice are
commonly used as a probe of the phase properties of this
system [3–6]. Current understanding of the interference of
BECs is largely based on the concept of phase coherence
which reveals the superfluidity and the matter wave na-
ture of the condensates.

For the interference of two condensates, it is shown
that an interference pattern arises whether they are ini-
tially in phase state (with locked relative phase) [1] or in
Fock state (with definite particle number) [7–10]. In the
latter case, the interference effect still originates from a
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well-defined relative phase which is “built up” during the
sequence of measurements, i.e., the definite phase is de-
rived from the dynamic evolution of this system (initially
with random relative phase). For a fully coherent array
of condensates in optical lattices, the interference pattern
obtained from the free expansion is a natural result of
the fixed relative phases between different condensates be-
longing to consecutive wells [3–5,11–16]. When the coher-
ent array of condensates enter the Mott insulating phase
(MIP) [17,18] in which phase coherence is lost, things be-
come complicated. The pioneering experiment [17] of the
superfluid to Mott-insulator transition demonstrated that
when the weakly interacting gas entered the MIP the in-
terference pattern became blurry and even disappeared
completely. Whereas for a strongly interacting gas it has
been pointed out that a good measure for this Mott tran-
sition was excitation spectra rather than interference pat-
terns [19]. Besides, relevant theoretical works [20,21] based
on a correlation function method imply that even in the
MIP, an interference pattern should also be observed in
a single measurement. On the other hand, a recent inter-
ference experiment by Hadzibabic et al. [22] states that
the periodicity of the optical lattice is sufficient for the
interference of an array of independent BECs even with
no phase coherence. A similar discussion is also found in
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a theoretical reference [23]. It is therefore important to
explore the physics of interference patterns produced fol-
lowing the release and expansion of BECs.

In this paper, we present a theoretical model to in-
vestigate the interference of an array of BECs confined in
a spin-dependent optical lattice, which is motivated by a
recent experiment by Mandel et al. [24]. The interference
patterns obtained from our theoretical model and numer-
ical calculations agree well with those observed in the ex-
periment [24]. Our conclusion is that the interference of
an array of Bose condensates trapped in a spin-dependent
optical lattice results from the entanglement of a single
atom and the interference is irrelevant with the phases of
individual condensates.

This paper is organized as follows: in Section 2, af-
ter introducing the basic spirit of the experiment [24] a
theoretical model is presented. In Section 3, we calculate
numerically the density distributions of the wave packets
in spin states |1〉 and |0〉, respectively. Then we compare
the theoretical interference patterns with those observed
in the experiment. Section 4 deals with an experimental
suggestion of nonuniform phase distribution, which can be
used to test further the theoretical model and prediction.
Finally, discussion and conclusion is given in Section 5.

2 Theoretical model

For a Bose-condensed gas in a harmonic magnetic trap
and a three-dimensional (3D) optical lattice, the atoms
are localized on individual lattice sites when the system
enters the MIP. After switching off the magnetic trap and
the lattice potentials along the y- and z-directions there
only exists a 1D spin-dependent optical lattice along the
x-direction which is formed by two counterpropagating
laser beams with linear polarization vectors enclosing an
angle θ. Then each atom is prepared into a coherent su-
perposition of two spin states |0〉 ≡ |F = 1,mF = −1〉
and |1〉 ≡ |F = 2,mF = −2〉 using a microwave pulse. By
changing the polarization angle θ one can realize the split-
ting and transport of atomic wave packets such that the
wave packets of an atom in spin states |0〉 and |1〉 re-
spectively are transported in opposite directions, which
is the so-called spin-dependent transport. Finally, the op-
tical lattice is turned off and the emerging interference
patterns can be used as a diagnosis signal for the co-
herence of the spin-dependent transport. In a word, the
spin-dependent transport is the principal idea of the ex-
periment by Mandel et al. [24].

Our starting point is that there is an array of Bose con-
densates formed in the 1D spin-dependent optical lattice
along the horizontal x-direction when the magnetic trap
and the lattice potentials along the y- and z-directions are
turned off. Since the system experienced a Mott transition
in advance these condensates do not have any phase coher-
ence relative to each other any more. In this situation, the
tunnelling between neighboring lattice sites is suppressed
and the effects of the atomic interactions during the ex-
pansion of the condensates can be neglected, which holds
in the experiment. Since each condensate confined in the

lattice potential is fully coherent, in the frame of single
particle theory it can be described by a single order pa-
rameter Ψk = (N/(2kM + 1))1/2 exp[iθk]φk according to
the Hartree or mean-field approximation [25], where φk

is the single-particle wave function in the kth lattice site
and θk is the initially random relative phase of the kth
condensate. The coefficient N/(2kM + 1) represents the
average particle number of each condensate, with N de-
noting the total particle number of the whole condensate,
and 2kM + 1 being the total number of lattice sites.

Following the experimental manipulation sequence
in [24], we now consider an atom with two spin states |0〉
and |1〉 forming its two logical basis-vectors. Initially, the
atom lies in spin state |0〉k. Without loss of generality, by
using an initial arbitrary α microwave pulse to drive Rabi
oscillations between the two spin states, the atom can be
placed into a coherent superposition of the two spin states
|0〉k and |1〉k,
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]
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After a spin-dependent transport, the spin state of the
atom is given by cos[α/2] |0〉k + i exp[iβ] sin[α/2] |1〉k+r ,
where the spatial wave packet of the atom is split into
two components in states |0〉k and |1〉k+r , respectively,
i.e., the atomic wave packet is delocalized over the kth
and the (k + r)th lattice site. In the above notation, the
wave packet in state |0〉 has retained the original lattice
site index. Here, r denotes the separation between two
wave packets which have originated from the same kth
lattice site. The relative phase β between the two wave
packets, being independent of the number of particles, is
determined by the accumulated kinetic and potential en-
ergy phase in the transport process. With the choice of
parameters in the experiment, the phase β is almost con-
stant throughout the cloud of atoms and its absolute value
is small. Consequently, the atomic wave function can be
described by an entangled single-atom state, i.e., an entan-
gled quantum state between the internal degree of freedom
(spin) and the external degree of freedom (spatial wave
packet)

ψk = cos
[α

2

]
|0〉k ϕk + i exp[iβ] sin

[α

2

]
|1〉k+r ϕk+r. (2)

We assume that the spatial wave packet has a form
of Gaussian distribution in coordinate space, i.e., ϕk =
A exp[−(x−kd)2/2σ2], where d = λ/2 is the period of the
optical lattice and λ is the wavelength of the retroreflected
laser beams. A = 1/σ1/2π1/4 is a normalization constant,
and σ denotes the width of the condensate in each opti-
cal well. By applying a final π/2 microwave pulse whose
transform rule is given by equation (1), one has

φk = |0〉Ξ0,k + |1〉Ξ1,k, (3)
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where Ξ0,k and Ξ1,k are respectively given by
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In equation (3), the indices of spin states |0〉 and |1〉 are
removed in view of the bosonic identity.

Once the spin-dependent optical lattice is switched
off, the evolution of the spatial components Ξj,k(x, t)
(j = 0, 1) of the atomic wave function can be derived
by the propagator method [15,16,25]

Ξj,k(x, t) =
∫ ∞

−∞
K(x, t; y, t = 0)Ξj,k(y, t = 0)dy, (6)

where Ξj,k(y, t = 0) (j = 0, 1) are the spatial components
at the initial time t = 0 which are given by equations (4)
and (5), and K(x, t; y, t = 0) is the propagator in free
space expressed as [26]

K(x, t; y, t = 0) =

[
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By combining the formulae (4–7), one can obtain the fol-
lowing analytical results of the spatial components after a
straightforward calculation:
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where the parameter γ = �/mσ2 denotes the trapping
frequency within a single well of the optical lattice.

We now consider the density distribution of the overall
condensates after switching off the spin-dependent optical
lattice. The wave function of the whole sample at time t
can be expressed as

Ψ(x, t) =
kM∑

k=−kM

√
N

2kM + 1
exp[iθk]φk(x, t), (10)

where the time-dependent atomic wave function is given
by φk(x, t) = |0〉Ξ0,k(x, t) + |1〉Ξ1,k(x, t), and θk denotes
the random phase of the kth condensate at time t. In

equation (10), we have neglected the phase diffusion of
each condensate possibly induced by quantum and ther-
mal fluctuations, which won’t affect the essential of our
present problem.

For a Bose-condensed gas confined in a trap, the phase
fluctuation is characterized by the fluctuations in the
chemical potential [27–29]. In the presence of a 1D optical
lattice with sufficiently strong intensity, the phase fluc-
tuations for different condensates in individual wells are
independent from each other. Two dominating physical
ingredients are responsible for the creation of phase dif-
fusion: one is the collision between condensed atoms and
background hot cloud (thermal fluctuation), and the sec-
ond is spontaneously collective excitation due to quantum
fluctuation [29]. In real experiments, the phase diffusion
effect is small and can be omitted safely. If the phase dif-
fusion effect was taken into account, the holistic character
of the interference pattern will not change except that the
central peak of the interference pattern will decrease a
little relatively [29].

Obviously, there is no interference between the wave
packets in different spin states as the two logical basis-
vectors |0〉 and |1〉 are orthogonal. The following model is
based on an assumption that for the atoms in the entan-
gled single-atom state between the internal and external
degrees of freedom each atom interferes only with itself.
Concretely, the density distributions of the wave packets
in spin states |0〉 or |1〉, i.e., the density distributions of the
overall condensates confined in the total occupied lattice
sites, are not expressed by equations (11) and (12)
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but given by equations (13) and (14)

n0(x, t) =
N

2kM + 1

kM∑

k=−kM

|Ξ0,k(x, t)|2 , (13)

n1(x, t) =
N

2kM + 1

kM∑

k=−kM

|Ξ1,k(x, t)|2 . (14)

The test criterion of this model depends on whether its
theoretical prediction accords with the experimental re-
sults, i.e., whether this model can interpret well the exper-
iment. Thus we perform a Monte-Carlo analysis of n1(x, t)
by assigning sets of random numbers to the phase {θk}.
Our simulation results show that the interference patterns
based on equation (24) don’t agree with those observed
in the experiment [24] at all. In addition, provide that
there are locked phases for individual condensates, i.e., the
phase θk is not random (a simplest case is that the phase
of each condensate is the same), the calculation also shows
that the interference patterns derived from equation (12)
are not in agreement with the experimental results. Thus
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it is implied that equations (11) and (12) are invalid in
explaining the experiment. As expected, however, we find
that the theoretical interference patterns based on equa-
tion (14) agree well with the observed interference pat-
terns in the experiment (see Figs. 1 and 2 in Sect. 3),
which indicates that this model, i.e. equations (13) and
(14), can be employed to describe the real physics of the
emerging interference patterns in the experiment [24].

The physical essence of the density distributions ex-
pressed by equations (13) and (14) is that due to the en-
tanglement of a single atom each atom interferes only with
itself (or each condensate interferes only with itself), i.e.,
there is no interference effect between two arbitrary dif-
ferent condensates. In other words, the entanglement of a
single atom is sufficient for the interference of the overall
condensates and this interference will be irrelevant with
the phases of individual condensates.

3 Density distributions and evolution

By using the experimental parameters in [24], we plot the
density distributions of the atomic wave packets in states
|0〉 and |1〉 respectively based on equations (13) and (14).

3.1 Parameters

In the following calculations, the relevant parameters are
consistent with those in the experiment, where α = π/2,
N = 3 × 105, λ = 785 nm, and d = 392.5 nm. For
simplicity, we treat the relative phase β as zero. Nev-
ertheless, we also take into account the effect of it on
the interference patterns to compare with the omitted
case. Since the value of σ, which characterizes the width
of condensate in each lattice site, is chiefly determined
by the optical confinement [11], one can evaluate it in
terms of a variational calculation. As a result, the ra-
tio σ/d = 0.173 is obtained. The total number of lat-
tice sites 2kM + 1 can be determined theoretically by
the formula k2

M = 2�(15Nad/8π1/2ahoσ)2/5/(mω2
xd

2)
(see Eq. (10) in [11]), where the geometric average of the
magnetic frequencies x = 2π × 16 Hz, m is the mass
of 87RGB atom, the oscillator atom, the oscillator length
aho =

√
�/m, and the s-wave scattering length for 87Rb

atom is a ∼ 50 Å. Thus kM ∼ 50 is obtained from the
above equation.

3.2 Density distributions in state |1〉
In order to compare with the experiment, we consider
firstly the density distribution of the wave packets in state
|1〉 after the optical lattice is switched off with a time of
flight being 14 ms. The analytical result of n1(x, t) at time
t is given by equation (14). Shown in Figure 1a is the den-
sity distribution (in units of H = NA2/(2kM +1)) in state
|1〉 at t = 14 ms after initially localized atoms have been
delocalized over two lattice sites. Note that in all the fig-
ures plotted in this paper the horizontal coordinate x is

Fig. 1. Density distributions in state |1〉 after switching off
the spin-dependent optical lattice in the cases that initially
localized atoms have been delocalized over two (a), three (b),
four (c), five (d), six (e), and seven (f) lattice sites by the
interferometer sequence (see Fig. 3 in [24]). The time of flight
period is 14 ms. The vertical coordinate n1(x, t) is in units of
H (H = NA2/(2kM + 1)) and the horizontal coordinate x is
in units of µm. r denotes the separation between the two wave
packets originated from the same lattice site.

Fig. 2. Evolution of the density distribution in state |1〉 with
time t after switching off the spin-dependent optical lattice in
the case that initially localized atoms have been delocalized
over three lattice sites. The density distributions are shown at
t = 2 ms (a) and t = 15 ms (b).

in units of µm and the vertical coordinate is in units of
H = NA2/(2kM + 1). The density distributions in the
cases that initially localized atoms have been delocalized
over three (b), four (c), five (d), six (e), and seven (f) lat-
tice sites are given in Figures 1b–1f, respectively, where
the delocalized extension is denoted by r. With the sepa-
ration r increasing, we see that the fringe spacing of inter-
ference patterns decreases remarkably and the visibility of
the interference patterns reduces distinctively (see Fig. 1),
which is in agreement with the experimental results (see
Fig. 4 in [24]).

In Figure 2, we show the evolution of the density distri-
bution in state |1〉 after initially localized atoms have been
delocalized over three lattice sites. Displayed in Figure 2b
is the density distribution at t = 15 ms, which agrees well
with the observed interference pattern in the experiment
(see Fig. 5 in [24]).

In the calculations mentioned above, we have neglected
the effect of the relative phase β on the density distribu-
tion by treating it as zero. Displayed in Figure 3 are the
density distributions for the relative phase β with −π/12
and −π/3 respectively. When taking into account the rela-
tive phase β between the two wave packets the right-hand
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Fig. 3. The effect of the phase β on the density distribution in
state |1〉 after switching off the spin-dependent optical lattice
in the case that initially localized atoms have been delocalized
over three lattice sites. The time of flight period is 15 ms.
The density distributions are shown at β = −π/12 (a) and
β = −π/3 (b), respectively.

Fig. 4. Density distributions in state |0〉 after switching off
the spin-dependent optical lattice in the cases that initially
localized atoms have been delocalized over two (a), three (b),
four (c), five (d), six (e), and seven (f) lattice sites. The time
of flight period is 14 ms.

side peaks of the density distributions become higher than
the left-hand side ones, which breaks the symmetry of the
interference patterns to a certain extent. In addition, the
larger the absolute value of the phase β is, the weaker the
symmetry of the interference pattern becomes. Accord-
ing to the observed interference patterns, we can conclude
that the absolute value of the phase β is possibly close to
zero in the experiment [24].

3.3 Density distributions in state |0〉

Now, we discuss the density distributions in state |0〉
which were not observed in [24]. Similarly to the foregoing
analysis, the analytical result of the density distributions
in state |0〉 is given by equation (13). Shown in Figure 4
are the density distributions in state |0〉 at time t = 14 ms.
In contrast with the density distributions in state |1〉, the
positions of the sharp peaks in Figures 4a–4f just become
those of local minimum densities in Figures 1a–1f and vice
versa, which can be interpreted by the conservation of en-
ergy and particle number.

Fig. 5. Density distributions in states |1〉 (a) and |0〉 (b)
respectively provided that there is a fixed phase distribu-
tion among the array of condensates confined in the spin-
dependent optical lattice and there exists interference effects
between different condensates. The time of flight period is
15 ms. The phase of the kth condensate is given by θk =
2π(kM + k)/(2kM + 1) (k = −kM , ..., kM ). Here r = 2 de-
notes that initially localized atoms have been delocalized over
three lattice sites.

4 Experimental suggestion

As mentioned above, the Bose condensates confined in the
1D spin-dependent optical lattice have no phase coherence
relative to each other as the system experienced a Mott
transition beforehand. In this situation, the density dis-
tributions of the atomic wave packets based on our the-
oretical model are in good agreement with the observed
interference patterns in [24]. From the theoretical model
(see Eqs. (13) and (14)), the density distributions of the
atomic wave packets in different spin states are irrelevant
with the phases of individual condensates in this system.
Hence, when there is a locked phase distribution for the
array of condensates, the density distributions will not
change.

To test further the validity of this model, we propose
an experimental suggestion of nonuniform phase distribu-
tion. Concretely, we design a fixed linear phase distribu-
tion with a total width of 2π for the array of condensates,
in which the phase difference between two neighboring
condensates is δθ = 2π/(2kM + 1) (kM ∼ 50), i.e.,
the phase of the kth condensate can be expressed by
θk = 2π(kM + k)/(2kM + 1) (k = −kM , ..., kM ). This
goal can be achieved by using techniques of phase redis-
tribution such as phase imprinting [30,31] and phase en-
gineering [32,33]. Once a nonuniform phase distribution
is performed successfully on the array of condensates, one
applies an initial α = π/2 microwave pulse to drive Rabi
oscillations between the two spin states |0〉 and |1〉, re-
spectively. Thus all the atoms initially in spin state |0〉 are
placed in a coherent superposition of the two spin states,
where the transform rule is given by equation (1).

The following deduction is similar to that in the pre-
ceding sections. After a spin-dependent transport and ap-
plying a final π/2 microwave pulse as well as a releas-
ing of the optical lattice, the density distributions of the
wave packets in states |0〉 and |1〉 respectively would be
given by equations (11) and (12) if there were interfer-
ence effects between different condensates. In this case,
the density distributions would be quite different from
Figures 1–4. Shown in Figure 5 is the predicted density
distribution of the wave packets at time t = 15 ms with
r = 2d and δθ = 2π/(2kM +1). From Figure 5, we can see
that there exists a strong decay and revival of the density



94 The European Physical Journal D

oscillation, and there is even no visible interference fringe
(see Fig. 5b).

Due to the entanglement of a single atom, however,
we predict that after the nonuniform phase distribution
the density distributions of the wave packets in states
|0〉 and |1〉 respectively are still given by equations (13)
and (14), i.e., the density distributions will not change. In
other words, for the atoms in the entangled single-atom
state each atom interferes only with itself whether the
condensates are fully coherent (with fixed relative phases)
or completely independent (with random relative phases),
which implies that the entanglement of a single atom is
sufficient for the interference of BECs in a spin-dependent
optical lattice and the interference effect is irrelevant with
the phases of the individual condensates. This experimen-
tal proposal provides a straight way to test further our
theoretical model and prediction.

5 Discussion and conclusion

To summarize, we have developed a theoretical model to
investigate the interference of an array of BECs confined
in a 1D spin-dependent optical lattice by calculating the
density distributions and evolution of the atomic wave
packets. In such a system which has experienced before-
hand a Mott transition and a spin-dependent transport,
each atom can be described by an entangled single-atom
state between the internal (spin) and the external (spatial
wave packet) degrees of freedom. Our theoretical model
is based on an assumption that for the atoms in the en-
tangled single-atom states each atom interferes only with
itself. The results obtained from this model agree well with
the interference patterns observed in a recent experiment,
which in turn verifies the validity of this model and as-
sumption. In addition, when taking into account the rel-
ative phase β between the two wave packets of an atom
which is obtained during the transport process, it is found
that the symmetry of the density distributions is broken
to a certain extent.

From the present work, it has been shown that due
to the entanglement of a single atom each atom interferes
only with itself (or each condensate interferes only with
itself in this system), i.e., there is no interference effect be-
tween two arbitrary different condensates. In other words,
the entanglement of a single atom is sufficient for the in-
terference of BECs confined in a spin-dependent optical
lattice and the interference shows no relevancy with the
phases of individual condensates. Finally, an experimental
suggestion of nonuniform phase distribution is proposed
to test further our theoretical model and prediction. The
theoretical model presented here can also be applied to
describe the dynamics of BECs trapped in a combined
harmonic and optical lattice potential, wherein the num-
ber of atoms in individual lattice sites is different. The

method could possibly even be extended to consider the
case of non-perfect Mott-insulator state.
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